我正在进行一项教科书练习,要求“使用布尔代数法则最小化以下布尔表达式,然后在不使用NOT门的情况下为其开发逻辑电路”。
表达式是X =(不是A)和(不是B或C)或不是(C或A)
首先,我试图最小化这个等式。 我使用左侧的分配法将(不是A)和(不是B或C)转换为(不是A而不是B)或(不是A和C)。
因此遵循这个定律,新的等式是(不是A而不是B)或(不是A和C)或(不是C而不是A)。
在((不是A和C)OR(非C和非A))的右侧分组,表明还有另一个法则规定(AB + A(NOT B)= A)。
我在这里使用这个法律(称这个法律?)来简化整个表达式,简单地说就是NOT(A)。
所以新的等式是(不是A而不是B)或(不是A)。
我使用冗余定律,它表明(A + AB = A),将整个表达式改为NOT(A)。
在这个最小化之后,我已经成功地将整个方程最小化为X = NOT(A)。 真值表显示它们在功能上是等价的。
我的两个问题是1.我看到的地方? 法律,我已经搜索了这个法律的名称,但一直找不到。 是否有法律名称(AB + A(非B)= A)? 2.如果函数不是(A),我不确定如何在不使用NOT门的情况下设计逻辑电路? 我在想,也许NAND门可以工作,但那些有逆变器。 如果它要求不使用NOT门,那么使用NAND门仍然有效吗?
感谢您的任何帮助。
I am working on a textbook exercise that asks to "Minimize the following boolean expression using boolean algebraic laws, and then develop a logic circuit for it WITHOUT using a NOT gate".
The expression is X= (NOT A) AND (NOT B OR C) OR NOT(C OR A)
First, I attempt to minimize this equation. I use distribute law of the left hand side to turn (NOT A) AND (NOT B OR C) to (NOT A AND NOT B) OR (NOT A AND C).
So following this law, the new equation is (NOT A AND NOT B) OR (NOT A AND C) OR (NOT C AND NOT A).
Grouping at the right hand side of ((NOT A AND C) OR (NOT C AND NOT A)), shows that there is another law that states (AB + A(NOT B) = A).
I use this LAW (Call this law ?) here to simplify the entire expression to simply NOT(A).
So the new equation is (NOT A AND NOT B) OR (NOT A).
I use the redundancy law, which states that (A + AB = A), to change the entire expression to simply NOT(A).
Following this minimization, I have successfully minimized the entire equation to X=NOT(A). Truth tables show they are functionally equivalent.
My two questions are 1. The area where I saw ? Law, I have searched for a name for this law but have not been able to find one. Is there a name for the law (AB + A(NOT B) = A)? 2. If the function is NOT(A), I am not sure how one could design a logic circuit without using a NOT gate? I was thinking that maybe a NAND gate could work, but those have inverters. If it asks to not use a NOT gate, is it still valid to use a NAND gate?
Thank you for any help.
最满意答案
AB + A(NOT B) = A没有名称,该等式只是分布定律 AB + A(NOT B) = A(B + NOT B)的结果, B + NOT B = TRUE的事实。
关于你对NAND的关注,是的,你需要使用它,因为没有办法从OR和AND得到NOT 。
There is no name for AB + A(NOT B) = A, the equation is just a consequence of the distribution law AB + A(NOT B) = A(B + NOT B) and the fact that B + NOT B = TRUE.
Regarding your concern about NAND, yes you need to used it because there is no way to get NOT from just OR and AND.
布尔表达式 - 最小化和规律(Boolean Expression- Minimization and Law)我正在进行一项教科书练习,要求“使用布尔代数法则最小化以下布尔表达式,然后在不使用NOT门的情况下为其开发逻辑电路”。
表达式是X =(不是A)和(不是B或C)或不是(C或A)
首先,我试图最小化这个等式。 我使用左侧的分配法将(不是A)和(不是B或C)转换为(不是A而不是B)或(不是A和C)。
因此遵循这个定律,新的等式是(不是A而不是B)或(不是A和C)或(不是C而不是A)。
在((不是A和C)OR(非C和非A))的右侧分组,表明还有另一个法则规定(AB + A(NOT B)= A)。
我在这里使用这个法律(称这个法律?)来简化整个表达式,简单地说就是NOT(A)。
所以新的等式是(不是A而不是B)或(不是A)。
我使用冗余定律,它表明(A + AB = A),将整个表达式改为NOT(A)。
在这个最小化之后,我已经成功地将整个方程最小化为X = NOT(A)。 真值表显示它们在功能上是等价的。
我的两个问题是1.我看到的地方? 法律,我已经搜索了这个法律的名称,但一直找不到。 是否有法律名称(AB + A(非B)= A)? 2.如果函数不是(A),我不确定如何在不使用NOT门的情况下设计逻辑电路? 我在想,也许NAND门可以工作,但那些有逆变器。 如果它要求不使用NOT门,那么使用NAND门仍然有效吗?
感谢您的任何帮助。
I am working on a textbook exercise that asks to "Minimize the following boolean expression using boolean algebraic laws, and then develop a logic circuit for it WITHOUT using a NOT gate".
The expression is X= (NOT A) AND (NOT B OR C) OR NOT(C OR A)
First, I attempt to minimize this equation. I use distribute law of the left hand side to turn (NOT A) AND (NOT B OR C) to (NOT A AND NOT B) OR (NOT A AND C).
So following this law, the new equation is (NOT A AND NOT B) OR (NOT A AND C) OR (NOT C AND NOT A).
Grouping at the right hand side of ((NOT A AND C) OR (NOT C AND NOT A)), shows that there is another law that states (AB + A(NOT B) = A).
I use this LAW (Call this law ?) here to simplify the entire expression to simply NOT(A).
So the new equation is (NOT A AND NOT B) OR (NOT A).
I use the redundancy law, which states that (A + AB = A), to change the entire expression to simply NOT(A).
Following this minimization, I have successfully minimized the entire equation to X=NOT(A). Truth tables show they are functionally equivalent.
My two questions are 1. The area where I saw ? Law, I have searched for a name for this law but have not been able to find one. Is there a name for the law (AB + A(NOT B) = A)? 2. If the function is NOT(A), I am not sure how one could design a logic circuit without using a NOT gate? I was thinking that maybe a NAND gate could work, but those have inverters. If it asks to not use a NOT gate, is it still valid to use a NAND gate?
Thank you for any help.
最满意答案
AB + A(NOT B) = A没有名称,该等式只是分布定律 AB + A(NOT B) = A(B + NOT B)的结果, B + NOT B = TRUE的事实。
关于你对NAND的关注,是的,你需要使用它,因为没有办法从OR和AND得到NOT 。
There is no name for AB + A(NOT B) = A, the equation is just a consequence of the distribution law AB + A(NOT B) = A(B + NOT B) and the fact that B + NOT B = TRUE.
Regarding your concern about NAND, yes you need to used it because there is no way to get NOT from just OR and AND.
发布评论